Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor
نویسندگان
چکیده
In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied.
منابع مشابه
Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics
Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics a...
متن کاملElectro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device.
Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 μm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet. We demonstrated, for the ...
متن کاملAmorphous Silicon Core-shell Nanowire Solar Cells
Nanostructures such as nanoparticles and nanowires have been demonstrated as powerful tools to improve light absorption[1-4], to enable low temperature process[5], to demonstrate multi-exciton generation[6], and to decouple the absorption depth and carrier diffusion length[7, 8]. Here we demonstrated the first amorphous silicon coreshell nanowire solar cells, which can be fabricated through a l...
متن کاملAmorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
Articles you may be interested in Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer Appl. Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon ...
متن کاملEffects of spectrum on the power rating of amorphous silicon photovoltaic devices
The effects of different spectra on the laboratory based performance evaluation of amorphous silicon solar cells is investigated using an opto-electrical model which was developed specifically for this purpose. The aim is to quantify uncertainties in the calibration process. Two main uncertainties arise from the differences in the test spectrum and the standard spectrum. First, the mismatch bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015